Given an integer array nums
that may contain duplicates, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,2] Output: [[],[1],[1,2],[1,2,2],[2],[2,2]]
Example 2:
Input: nums = [0] Output: [[],[0]]
Constraints:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
Subsets II Solutions
✅Time:O(n2n)
✅Space:O(n2n)
C++
Will be updated Soonclass Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
vector<vector<int>> ans;
sort(begin(nums), end(nums));
dfs(nums, 0, {}, ans);
return ans;
}
private:
void dfs(const vector<int>& nums, int s, vector<int>&& path,
vector<vector<int>>& ans) {
ans.push_back(path);
for (int i = s; i < nums.size(); ++i) {
if (i > s && nums[i] == nums[i - 1])
continue;
path.push_back(nums[i]);
dfs(nums, i + 1, move(path), ans);
path.pop_back();
}
}
};
Java
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> ans = new ArrayList<>();
Arrays.sort(nums);
dfs(nums, 0, new ArrayList<>(), ans);
return ans;
}
private void dfs(int[] nums, int s, List<Integer> path, List<List<Integer>> ans) {
ans.add(new ArrayList<>(path));
for (int i = s; i < nums.length; ++i) {
if (i > s && nums[i] == nums[i - 1])
continue;
path.add(nums[i]);
dfs(nums, i + 1, path, ans);
path.remove(path.size() - 1);
}
}
}
Python
Will be updated Soonclass Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
ans = []
def dfs(s: int, path: List[int]) -> None:
ans.append(path)
if s == len(nums):
return
for i in range(s, len(nums)):
if i > s and nums[i] == nums[i - 1]:
continue
dfs(i + 1, path + [nums[i]])
nums.sort()
dfs(0, [])
return ans
Watch Tutorial
Checkout more Solutions here