497. Random Point in Non-overlapping Rectangles LeetCode Solution

Minimum Cost to Merge Stones
Share:

Random Point in Non-overlapping Rectangles You are given an array of non-overlapping axis-aligned rectangles rects where rects[i] = [ai, bi, xi, yi] indicates that (ai, bi) is the bottom-left corner point of the ith rectangle and (xi, yi) is the top-right corner point of the ith rectangle. Design an algorithm to pick a random integer point inside the space covered by one of the given rectangles. A point on the perimeter of a rectangle is included in the space covered by the rectangle.

Any integer point inside the space covered by one of the given rectangles should be equally likely to be returned.

Note that an integer point is a point that has integer coordinates.

Implement the Solution class:

  • Solution(int[][] rects) Initializes the object with the given rectangles rects.
  • int[] pick() Returns a random integer point [u, v] inside the space covered by one of the given rectangles.

Example 1:

Input
["Solution", "pick", "pick", "pick", "pick", "pick"]
[[[[-2, -2, 1, 1], [2, 2, 4, 6]]], [], [], [], [], []]
Output
[null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]]

Explanation
Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
solution.pick(); // return [1, -2]
solution.pick(); // return [1, -1]
solution.pick(); // return [-1, -2]
solution.pick(); // return [-2, -2]
solution.pick(); // return [0, 0]

Constraints:

  • 1 <= rects.length <= 100
  • rects[i].length == 4
  • -109 <= ai < xi <= 109
  • -109 <= bi < yi <= 109
  • xi - ai <= 2000
  • yi - bi <= 2000
  • All the rectangles do not overlap.
  • At most 104 calls will be made to pick.

Random Point in Non-overlapping Rectangles Solutions

Time: O(n)
Space: O(n)

C++

 Will be updated Soon

Java

 
 Will be updated Soon

Python

  Will be updated Soon

Watch Tutorial

Checkout more Solutions here

Leave a Comment

Your email address will not be published. Required fields are marked *

x