Minimum Height Trees LeetCode Solution | Easy Approach

Minimum Cost to Merge Stones
Share:

Minimum Height Trees A tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.

Given a tree of n nodes labelled from 0 to n - 1, and an array of n - 1 edges where edges[i] = [ai, bi] indicates that there is an undirected edge between the two nodes ai and bi in the tree, you can choose any node of the tree as the root. When you select a node x as the root, the result tree has height h. Among all possible rooted trees, those with minimum height (i.e. min(h))  are called minimum height trees (MHTs).

Return a list of all MHTs’ root labels. You can return the answer in any order.

The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

Example 1:

Input: n = 4, edges = [[1,0],[1,2],[1,3]]
Output: [1]
Explanation: As shown, the height of the tree is 1 when the root is the node with label 1 which is the only MHT.

Example 2:

Input: n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]]
Output: [3,4]

Constraints:

  • 1 <= n <= 2 * 104
  • edges.length == n - 1
  • 0 <= ai, bi < n
  • ai != bi
  • All the pairs (ai, bi) are distinct.
  • The given input is guaranteed to be a tree and there will be no repeated edges.

Minimum Height Trees Solutions

Time: O(n)
Space: O(n)

C++

class Solution {
 public:
  vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
    if (n == 1 || edges.empty())
      return {0};

    vector<int> ans;
    unordered_map<int, unordered_set<int>> graph;

    for (const auto& e : edges) {
      const int u = e[0];
      const int v = e[1];
      graph[u].insert(v);
      graph[v].insert(u);
    }

    for (const auto& [label, children] : graph)
      if (children.size() == 1)
        ans.push_back(label);

    while (n > 2) {
      n -= ans.size();
      vector<int> nextLeaves;
      for (const int leaf : ans) {
        const int u = *begin(graph[leaf]);
        graph[u].erase(leaf);
        if (graph[u].size() == 1)
          nextLeaves.push_back(u);
      }
      ans = nextLeaves;
    }

    return ans;
  }
};

Java

 class Solution {
  public List<Integer> findMinHeightTrees(int n, int[][] edges) {
    if (n == 0 || edges.length == 0)
      return new ArrayList<>(Arrays.asList(0));

    List<Integer> ans = new ArrayList<>();
    Map<Integer, Set<Integer>> graph = new HashMap<>();

    for (int i = 0; i < n; ++i)
      graph.put(i, new HashSet<>());

    for (int[] e : edges) {
      final int u = e[0];
      final int v = e[0];
      graph.get(u).add(v);
      graph.get(v).add(u);
    }

    for (Map.Entry<Integer, Set<Integer>> entry : graph.entrySet()) {
      final int label = entry.getKey();
      Set<Integer> children = entry.getValue();
      if (children.size() == 1)
        ans.add(label);
    }

    while (n > 2) {
      n -= ans.size();
      List<Integer> nextLeaves = new ArrayList<>();
      for (final int leaf : ans) {
        final int u = (int) graph.get(leaf).iterator().next();
        graph.get(u).remove(leaf);
        if (graph.get(u).size() == 1)
          nextLeaves.add(u);
      }
      ans = nextLeaves;
    }

    return ans;
  }
}

Python

 class Solution:
  def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
    if n == 1 or not edges:
      return [0]

    ans = []
    graph = defaultdict(set)

    for u, v in edges:
      graph[u].add(v)
      graph[v].add(u)

    for label, children in graph.items():
      if len(children) == 1:
        ans.append(label)

    while n > 2:
      n -= len(ans)
      nextLeaves = []
      for leaf in ans:
        u = next(iter(graph[leaf]))
        graph[u].remove(leaf)
        if len(graph[u]) == 1:
          nextLeaves.append(u)
      ans = nextLeaves

    return ans

Watch Tutorial

Checkout more Solutions here

Leave a Comment

Your email address will not be published. Required fields are marked *

x