Longest Increasing Subsequence Given an integer array nums
, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7]
is a subsequence of the array [0,3,1,6,2,2,7]
.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3] Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7] Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Longest Increasing Subsequence Solutions
✅Time: O(n)
✅Space: O(n)
C++
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.empty())
return 0;
// dp[i] := length of LIS ending at nums[i]
vector<int> dp(nums.size(), 1);
for (int i = 1; i < nums.size(); ++i)
for (int j = 0; j < i; ++j)
if (nums[j] < nums[i])
dp[i] = max(dp[i], dp[j] + 1);
return *max_element(begin(dp), end(dp));
}
};
Java
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums.length == 0)
return 0;
// dp[i] := length of LIS ending at nums[i]
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
for (int i = 1; i < nums.length; ++i)
for (int j = 0; j < i; ++j)
if (nums[j] < nums[i])
dp[i] = Math.max(dp[i], dp[j] + 1);
return Arrays.stream(dp).max().getAsInt();
}
}
Python
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
# dp[i] := LIS ending at nums[i]
dp = [1] * len(nums)
for i in range(1, len(nums)):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
Watch Tutorial
Checkout more Solutions here