Find Peak Element A peak element is an element that is strictly greater than its neighbors.
Given an integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
.
You must write an algorithm that runs in O(log n)
time.
Example 1:
Input: nums = [1,2,3,1] Output: 2 Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4] Output: 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
nums[i] != nums[i + 1]
for all validi
.
Find Peak Element Solutions
✅Time: O( log n)
✅Space: O(1)
C++
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int l = 0;
int r = nums.size() - 1;
while (l < r) {
const int m = l + (r - l) / 2;
if (nums[m] >= nums[m + 1])
r = m;
else
l = m + 1;
}
return l;
}
};
Java
class Solution {
public int findPeakElement(int[] nums) {
int l = 0;
int r = nums.length - 1;
while (l < r) {
final int m = l + (r - l) / 2;
if (nums[m] >= nums[m + 1])
r = m;
else
l = m + 1;
}
return l;
}
}
Python
class Solution:
def findPeakElement(self, nums: List[int]) -> int:
l = 0
r = len(nums) - 1
while l < r:
m = (l + r) // 2
if nums[m] >= nums[m + 1]:
r = m
else:
l = m + 1
return l
Watch Tutorial
Checkout more Solutions here