Course Schedule II There are a total of numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
- For example, the pair
[0, 1]
, indicates that to take course0
you have to first take course1
.
Return the ordering of courses you should take to finish all courses. If there are many valid answers, return any of them. If it is impossible to finish all courses, return an empty array.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]] Output: [0,1] Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
Example 2:
Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]] Output: [0,2,1,3] Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
Example 3:
Input: numCourses = 1, prerequisites = [] Output: [0]
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
- All the pairs
[ai, bi]
are distinct.
Course Schedule II Solutions
✅Time: O(∣V∣+∣E∣)
✅Space: O(∣V∣+∣E∣)
C++
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<int> ans;
vector<vector<int>> graph(numCourses);
vector<int> inDegree(numCourses);
queue<int> q;
// build graph
for (const auto& p : prerequisites) {
const int u = p[1];
const int v = p[0];
graph[u].push_back(v);
++inDegree[v];
}
// topology
for (int i = 0; i < numCourses; ++i)
if (inDegree[i] == 0)
q.push(i);
while (!q.empty()) {
const int u = q.front();
q.pop();
ans.push_back(u);
for (const int v : graph[u])
if (--inDegree[v] == 0)
q.push(v);
}
return ans.size() == numCourses ? ans : vector<int>();
}
};
Java
class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
List<Integer> ans = new ArrayList<>();
List<Integer>[] graph = new List[numCourses];
int[] inDegree = new int[numCourses];
Queue<Integer> q = new ArrayDeque<>();
for (int i = 0; i < numCourses; ++i)
graph[i] = new ArrayList<>();
// build graph
for (int[] p : prerequisites) {
final int u = p[1];
final int v = p[0];
graph[u].add(v);
++inDegree[v];
}
// topology
for (int i = 0; i < numCourses; ++i)
if (inDegree[i] == 0)
q.offer(i);
while (!q.isEmpty()) {
final int u = q.poll();
ans.add(u);
for (final int v : graph[u])
if (--inDegree[v] == 0)
q.offer(v);
}
if (ans.size() == numCourses)
return ans.stream().mapToInt(i -> i).toArray();
return new int[] {};
}
}
Python
class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
ans = []
graph = [[] for _ in range(numCourses)]
inDegree = [0] * numCourses
q = deque()
# build graph
for v, u in prerequisites:
graph[u].append(v)
inDegree[v] += 1
# topology
for i, degree in enumerate(inDegree):
if degree == 0:
q.append(i)
while q:
u = q.popleft()
ans.append(u)
for v in graph[u]:
inDegree[v] -= 1
if inDegree[v] == 0:
q.append(v)
return ans if len(ans) == numCourses else []
Watch Tutorial
Checkout more Solutions here